Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.436
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38575819

RESUMO

Antibiotics have been widely detected in aquatic environments, and fungal biotransformation receives considerable attention for antibiotic bioremediation. Here, a fungus designated Cladosporium cladosporioides 11 (CC11) with effective capacity to biotransform fluoroquinolones was isolated from aquaculture pond sediments. Enrofloxacin (ENR), ciprofloxacin (CIP) and ofloxacin (OFL) were considerably abated by CC11, and the antibacterial activities of the fluoroquinolones reduced significantly after CC11 treatment. Transcriptome analysis showed the removal of ENR, CIP and OFL by CC11 is a process of enzymatic degradation and biosorption which consists well with ligninolytic enzyme activities and sorption experiments under the same conditions. Additionally, CC11 significantly removed ENR in zebrafish culture water and reduced the residue of ENR in zebrafish. All these results evidenced the potential of CC11 as a novel environmentally friendly process for the removal of fluoroquinolones from aqueous systems and reduce fluoroquinolone residues in aquatic organisms.

2.
Angew Chem Int Ed Engl ; : e202320223, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588224

RESUMO

Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations via intersectional or combined effects such as gating, feedback, shape-memory, or programming. In absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are also elastic but also motile, displaying the rare photosalient effect.

3.
Langmuir ; 40(15): 8271-8283, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557053

RESUMO

Surface modification of lubricating coatings on biomedical devices is a pivotal strategy to improve the overall performance and clinical efficacy, significantly reducing friction between devices and human tissues and mitigating tissue damage during intervention and long-term implantation. Recently, various hydrophilic polymeric materials have been used for achieving surface functionalization, endowing the biomedical device with excellent superlubrication performance. N-Vinylpyrrolidone (NVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are two typical representatives of nonionic and zwitterionic materials. However, there is still a research gap in a comparative study of the lubrication mechanisms and properties between them. In this study, a bioinspired and dopamine-assisted codeposition technique was used to fabricate biomimetic hydrophilic coatings, including P(DMA-NVP) and P(DMA-MPC), on polyurethane. To achieve a thorough comparative analysis of the self-adhesive coating performance, 3 M ratios of the copolymers were synthesized and comprehensive material evaluations were conducted. Additionally, surface morphology, hydrophilicity, and lubrication at both the microscale and macroscale were performed. It was found that both hydrophilic coatings exhibited good stability. The P(DMA-MPC) coating, due to the ability to attract and bind a large number of water molecules, demonstrated superior lubrication effects compared to the P(DMA-NVP) coating. The study provides an in-depth understanding of the lubrication behavior of the self-adhesive coatings to enhance the functionality and application in biomedical engineering.


Assuntos
Polímeros , Cimentos de Resina , Humanos , Lubrificação , Água
4.
J Cardiothorac Surg ; 19(1): 213, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616246

RESUMO

BACKGROUND: Pulmonary large-cell neuroendocrine carcinoma (pLCNEC) represents a rare malignancy characterized by its aggressive behavior and a notably high recurrence rate. Remarkably, there is currently no established standard treatment protocol for this condition. CASE DESCRIPTION: In this report, we present an intriguing case of pLCNEC diagnosed at clinical-stage IIB. This case involves a 64-year-old man with a smoking history spanning four decades. In our approach, we initiated a course of neoadjuvant chemotherapy in combination with pembrolizumab, administered for two cycles prior to surgical resection. This innovative treatment strategy resulted in a significant pathological response, culminating in a major pathological remission (MPR). As of the time of composing this report, the patient has been diligently monitored for 39 months post-surgery, exhibiting no indications of recurrence, and has demonstrated exceptional tolerance to the entire treatment regimen. CONCLUSIONS: We have first reported a clinically successful case of neoadjuvant combination chemotherapy with pembrolizumab in the treatment of pLCNEC. This case offers promising clinical insights and suggests that this therapeutic approach could be a viable option for managing pLCNEC.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Masculino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Carcinoma Neuroendócrino/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quimioterapia Combinada
5.
Comput Struct Biotechnol J ; 23: 1429-1438, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616961

RESUMO

The development of an innovative drug is complex and time-consuming, and the drug target identification is one of the critical steps in drug discovery process. Effective and accurate identification of drug targets can accelerate the drug development process. According to previous research, evolutionary and genetic information of genes has been found to facilitate the identification of approved drug targets. In addition, allosteric proteins have great potential as targets due to their structural diversity. However, this information that could facilitate target identification has not been collated in existing drug target databases. Here, we construct a comprehensive drug target database named Genetic and Evolutionary features of drug Targets database (GETdb, http://zhanglab.hzau.edu.cn/GETdb/page/index.jsp). This database not only integrates and standardizes data from dozens of commonly used drug and target databases, but also innovatively includes the genetic and evolutionary information of targets. Moreover, this database features an effective allosteric protein prediction model. GETdb contains approximately 4000 targets and over 29,000 drugs, and is a user-friendly database for searching, browsing and downloading data to facilitate the development of novel targets.

6.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38600665

RESUMO

Single-cell RNA sequencing (scRNA-seq) facilitates the study of cell type heterogeneity and the construction of cell atlas. However, due to its limitations, many genes may be detected to have zero expressions, i.e. dropout events, leading to bias in downstream analyses and hindering the identification and characterization of cell types and cell functions. Although many imputation methods have been developed, their performances are generally lower than expected across different kinds and dimensions of data and application scenarios. Therefore, developing an accurate and robust single-cell gene expression data imputation method is still essential. Considering to maintain the original cell-cell and gene-gene correlations and leverage bulk RNA sequencing (bulk RNA-seq) data information, we propose scINRB, a single-cell gene expression imputation method with network regularization and bulk RNA-seq data. scINRB adopts network-regularized non-negative matrix factorization to ensure that the imputed data maintains the cell-cell and gene-gene similarities and also approaches the gene average expression calculated from bulk RNA-seq data. To evaluate the performance, we test scINRB on simulated and experimental datasets and compare it with other commonly used imputation methods. The results show that scINRB recovers gene expression accurately even in the case of high dropout rates and dimensions, preserves cell-cell and gene-gene similarities and improves various downstream analyses including visualization, clustering and trajectory inference.


Assuntos
Algoritmos , Análise de Célula Única , RNA-Seq , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Análise por Conglomerados , Expressão Gênica , Perfilação da Expressão Gênica , Software
7.
Nanomicro Lett ; 16(1): 171, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602570

RESUMO

Although covalent organic frameworks (COFs) with high π-conjugation have recently exhibited great prospects in perovskite solar cells (PSCs), their further application in PSCs is still hindered by face-to-face stacking and aggregation issues. Herein, metal-organic framework (MOF-808) is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core-shell MOF@COF nanoparticle, which could effectively inhibit COF stacking and aggregation. The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored. The complementary utilization of π-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects. The resulting PSCs achieve an impressive power conversion efficiency of 23.61% with superior open circuit voltage (1.20 V) and maintained approximately 90% of the original power conversion efficiency after 2000 h (30-50% RH and 25-30 °C). Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles, the amount of lead leakage from unpackaged PSCs soaked in water (< 5 ppm) satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.

8.
Cell Rep ; 43(4): 114109, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38613782

RESUMO

The gut must perform a dual role of protecting the host against toxins and pathogens while harboring mutualistic microbiota. Previous studies suggested that the NADPH oxidase Duox contributes to intestinal homeostasis in Drosophila by producing reactive oxygen species (ROS) in the gut that stimulate epithelial renewal. We find instead that the ROS generated by Duox in the Malpighian tubules leads to the production of Upd3, which enters the gut and stimulates stem cell proliferation. We describe in Drosophila the existence of a countercurrent flow system, which pushes tubule-derived Upd3 to the anterior part of the gut and stimulates epithelial renewal at a distance. Thus, our paper clarifies the role of Duox in gut homeostasis and describes the existence of retrograde fluid flow in the gut, collectively revealing a fascinating example of inter-organ communication.

9.
Bioinformatics ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632084

RESUMO

MOTIVATION: It is difficult to generate new molecules with desirable bioactivity through ligand-based de novo drug design, and receptor-based de novo drug design is constrained by disease target information availability. The combination of artificial intelligence and phenotype-based de novo drug design can generate new bioactive molecules, independent from disease target information. Gene expression profiles can be used to characterize biological phenotypes. The Transformer model can be utilized to capture the associations between gene expression profiles and molecular structures due to its remarkable ability in processing contextual information. RESULTS: We propose TransGEM (Transformer-based model from gene expression to molecules), which is a phenotype-based de novo drug design model. A specialized gene expression encoder is employed to embed gene expression difference values between diseased cell lines and their corresponding normal tissue cells into TransGEM model. The results demonstrate that the TransGEM model can generate molecules with desirable evaluation metrics and property distributions. Case studies illustrate that TransGEM model can generate structurally novel molecules with good binding affinity to disease target proteins. The majority of genes with high attention scores obtained from TransGEM model are associated with the onset of the disease, indicating the potential of these genes as disease targets. Therefore, this study provides a new paradigm for de novo drug design, and it will promote phenotype-based drug discovery. AVAILABILITY: The code is available at https://github.com/hzauzqy/TransGEM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Front Immunol ; 15: 1309739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655264

RESUMO

Introduction: Macrophage-mediated inflammatory response may have crucial roles in the pathogenesis of a variety of human diseases. Growth differentiation factor 15 (GDF15) is a cytokine of the transforming growth factor-ß superfamily, with potential anti-inflammatory activities. Previous studies observed in human lungs some macrophages which expressed a high level of GDF15. Methods: In the present study, we employed multiple techniques, including immunofluorescence, flow cytometry, and single-cell RNA sequencing, in order to further clarify the identity of such GDF15high macrophages. Results: We demonstrated that macrophages derived from human peripheral blood mononuclear cells and rat bone marrow mononuclear cells by in vitro differentiation with granulocyte-macrophage colony stimulating factor contained a minor population (~1%) of GDF15high cells. GDF15high macrophages did not exhibit a typical M1 or M2 phenotype, but had a unique molecular signature as revealed by single-cell RNA sequencing. Functionally, the in vitro derived GDF15high macrophages were associated with reduced responsiveness to pro-inflammatory activation; furthermore, these GDF15high macrophages could inhibit the pro-inflammatory functions of other macrophages via a paracrine mechanism. We further confirmed that GDF15 per se was a key mediator of the anti-inflammatory effects of GDF15high macrophage. Also, we provided evidence showing that GDF15high macrophages were present in other macrophage-residing human tissues in addition to the lungs. Further scRNA-seq analysis in rat lung macrophages confirmed the presence of a GDF15high sub-population. However, these data indicated that GDF15high macrophages in the body were not a uniform population based on their molecular signatures. More importantly, as compared to the in vitro derived GDF15high macrophage, whether the tissue resident GDF15high counterpart is also associated with anti-inflammatory functions remains to be determined. We cannot exclude the possibility that the in vitro priming/induction protocol used in our study has a determinant role in inducing the anti-inflammatory phenotype in the resulting GDF15high macrophage cells. Conclusion: In summary, our results suggest that the GDF15high macrophage cells obtained by in vitro induction may represent a distinct cluster with intrinsic anti-inflammatory functions. The (patho)physiological importance of these cells in vivo warrants further investigation.


Assuntos
Diferenciação Celular , Fator 15 de Diferenciação de Crescimento , Macrófagos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Animais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Ratos , Células Cultivadas , Masculino , Inflamação/imunologia
11.
Angew Chem Int Ed Engl ; : e202403914, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658315

RESUMO

The dense and ordered molecular arrangements endow dynamic molecular crystals with fast response, rapid energy conversion, low energy dissipation, and strong coupling between heat/light and mechanical energy. Most of the known dynamic crystals can only respond to a single stimulus, and materials that can respond to multiple stimuli are rare. Here, we report an organic crystalline material that can be bent plastically and is also thermosalient, as its crystals can move when they undergo a reversible phase transition. The crystals transmit light regardless of their shape or crystalline phase. The combination of light transduction and reversible thermomechanical deformation provides an opportunity to switch the waveguiding capability of the material in a narrow temperature range, which holds a tremendous potential for applications in heat-averse electronic components, such as central processing units. Unlike existing electronics, the material we report here is completely organic and therefore much lighter, potentially reducing the overall weight of electronic circuits.

12.
Physiol Plant ; 176(2): e14305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659134

RESUMO

High night temperature stress is one of the main environmental factors affecting rice yield and quality. More and more evidence shows that microRNA (miRNA) plays an important role in various abiotic stresses. However, the molecular network of miRNA regulation on rice tolerance to high night temperatures remains unclear. Here, small RNA, transcriptome and degradome sequencing were integrated to identify differentially expressed miRNAs, genes, and key miRNA-target gene pairs in rice heat-sensitive and heat-tolerant lines at the filling stage suffering from high night temperature stress. It was discovered that there were notable differences in the relative expression of 102 miRNAs between the two rice lines under stress. Meanwhile, 5263 and 5405 mRNAs were differentially expressed in the heat-sensitive line and heat-tolerant line, and functional enrichment analysis revealed that these genes were involved in heat-related processes and pathways. The miRNAs-mRNAs target relationship was further verified by degradome sequencing. Eventually, 49 miRNAs-222 mRNAs target pairs with reverse expression patterns showed significant relative expression changes between the heat-tolerant and the heat-sensitive line, being suggested to be responsible for the heat tolerance difference of these two rice lines. Functional analysis of these 222 mRNA transcripts showed that high night temperature-responsive miRNAs targeted these mRNAs involved in many heat-related biological processes, such as transcription regulation, chloroplast regulation, mitochondrion regulation, protein folding, hormone regulation and redox process. This study identified possible miRNA-mRNA regulation relationships in response to high night temperature stress in rice and potentially contributed to heat resistance breeding of rice in the future.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Oryza , Oryza/genética , Oryza/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Temperatura Alta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-38634816

RESUMO

Purpose: To investigate the clinical value of the bacterial culture of fluid in the surgical area in laparoscopic transanal total mesorectal excision (Lap-taTME) and laparoscopic total mesorectal excision (Lap-TME). Methods: Clinical data of 106 patients with rectal cancer who had undergone surgery were retrospectively collected, including 56 patients in the Lap-taTME group and 50 patients in the Lap-TME group. In the Lap-taTME group, the initial pelvic fluid, the rectal cavity fluid after purse-string suture, and the pelvic cavity fluid after anastomosis were collected and recorded as culture No. 1, No. 2, and No. 3, respectively. In the Lap-TME group, culture No. 1 and No. 3 were collected as done in the Lap-taTME group. The culture results and postoperative complications were statistically analyzed. Results: The positive rate of culture No. 1 was zero in both groups, and there were 6 cases (10.7%) with positive culture No. 2 in the Lap-taTME group. However, the number of patients with positive culture No. 3 (7, 12.5%) and cumulative positive culture cases (11, 19.6%) in the Lap-taTME group were significantly higher than those in the Lap-TME group (0) (all P < .05). Pelvic infection occurred in 4 (7.1%) of the 11 cases (19.6%) with positive culture in the Lap-taTME group, accounting for 36.4% (4/11). There were no significant intergroup differences in anastomotic leakage and pelvic infection (all P > .05). Conclusion: Positive bacterial culture of fluid during Lap-taTME indicates an increased risk of pelvic infection after operation. Lap-taTME is more prone to intraoperative contamination than Lap-TME but does not significantly increase the risk of postoperative pelvic infection.

14.
Trials ; 25(1): 200, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509589

RESUMO

BACKGROUND: The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS: The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION: The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.


Assuntos
Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Doença de Parkinson/complicações , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos , Qualidade de Vida , Terapia por Exercício/métodos , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Front Cell Dev Biol ; 12: 1356151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529408

RESUMO

Introduction: Zeugodacus tau (Walker) is an invasive pest. An effective method to control this pest is the sterile insect technique (SIT). To better apply this technique, it is necessary to understand testis development progression. Methods: Differentially expressed genes (DEGs) during testis development were analyzed by PacBio Iso-Seq and RNA-seq. Results: RNA-Seq library of Z. tau testes on day 1, 6, and 11 post eclosion were constructed. We identified 755 and 865 differentially expressed genes in the comparisons of T6 (testes on day 6) vs. T1 and T11 vs. T1, respectively. The KEGG pathway analysis showed that the DEGs were significantly enriched in retinol metabolism, vitamin B6 metabolism, and ascorbate and aldarate metabolism pathways. Knockdown of retinol dehydrogenase 12-like (rdh12-like), pyridoxal kinase (pdxk) and regucalcin (rgn), the representative gene in each of the above 3 pathways, reduced the hatching rate of Z. tau offspring. In addition, we identified 107 Drosophila spermatogenesis-related orthologous genes in Z. tau, of which innexin 2 (inx2) exhibited significantly up-regulated expression throughout testis development, and the knockdown of this gene reduced offspring hatching rate. Discussion: Our data indicated that rdh12-like, pdxk, rgn, and inx2 genes were related to testis development, and they were conserved in tephritid species. These results suggested that this gene might have the same function in tephritid. The findings provide an insight into testis development and spermatogenesis in tephritid species.

16.
J Pharm Sci ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460573

RESUMO

BACKGROUND: Cefotaxime is commonly used in treating bacterial infections in neonates. To characterize the pharmacokinetic process in neonates and evaluate different recommended dosing schedules of cefotaxime, a physiologically-based pharmacokinetic (PBPK) model of cefotaxime was established in adults and scaled to neonates. METHODS: A whole-body PBPK model was built in PK-SIM® software. Three elimination pathways are composed of enzymatic metabolism in the liver, passive filtration through glomerulus, and active tubular secretion mediated by renal transporters. The ontogeny information was applied to account for age-related changes in cefotaxime pharmacokinetics. The established models were verified with realistic clinical data in adults and pediatric populations. Simulations in neonates were conducted and 100% of the dosing interval where the unbound concentration in plasma was above the minimum inhibitory concentration (fT>MIC) was selected as the target index for dosing regimen evaluation. RESULTS: The developed PBPK models successfully described the pharmacokinetic process of cefotaxime in adults and were scaled to the pediatric population. Good verification results were achieved in both adults' and neonates' PBPK models, indicating a good predictive performance. The optimal dosage regimen of cefotaxime was proposed according to the postnatal age (PNA) and gestational age (GA) of neonates. For preterm neonates (GA < 36 weeks), dosages of 25 mg/kg every 8 hours in PNA 0-6 days and 25 mg/kg every 6 hours in PNA 7-28 days were suggested. For term neonates (GA ≥ 36 weeks), dosages of 33 mg/kg every 8 hours in PNA 0-6 days and 33 mg/kg every 6 hours in PNA 7-28 days were recommended. CONCLUSIONS: Our study may provide useful experience in practicing PBPK model-informed precision dosing in the pediatric population.

17.
Environ Sci Pollut Res Int ; 31(17): 25952-25963, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492139

RESUMO

Nitrogen-containing disinfection by-products (N-DBPs) produced in the process of drinking water disinfection are widely concerning due to the high cytotoxicity and genotoxicity. It is due to the difficulty of natural degradation of N-DBPs in water and the fact that conventional treatment systems do not effectively treat N-DBPs in drinking water. In this study, N-nitrosopyrrolidine (NPYR) in water was electrocatalytically degraded by a three-dimensional electrode reactor (3DER). This system applied graphite plates as anode and cathode. The granular activated carbon (GAC) was used as third electrode. The degradation of NPYR using a continuous flow three-dimensional electrode reactor was investigated by examining the effects of flow rate, current density, electrolyte concentration, and pollutant concentration on the degradation efficiency, energy consumption, and reaction kinetics of GAC particle electrodes. The results showed that the optimal operating conditions were flow rate = 0.45 mL/min, current density = 6 mA/cm2, Na2SO4 concentration = 0.28 mol/L, and NPYR concentration = 20 mg/L. Under optimal conditions, the degradation of NPYR exceeded 58.84%. The main contributor of indirect oxidation was deduced from free radical quenching experiments. NPYR concentration was measured by GC-MS with DB-5 capillary column, operating in full scan monitoring mode for appropriate quantification of NPYR and intermediates. Based on the identification of reaction intermediates, a possible pathway for the electrochemical oxidation of NPYR on GAC particle electrodes was proposed.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , N-Nitrosopirrolidina , Carvão Vegetal , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Oxirredução , Eletrodos
18.
FASEB J ; 38(6): e23548, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38491832

RESUMO

Colorectal cancer (CRC) is a multifaceted disease characterized by a complex interaction between tumor cells and the surrounding microenvironment. Within this intricate landscape, exosomes have emerged as pivotal players in the tumor-stroma crosstalk, influencing the immune microenvironment of CRC. These nano-sized vesicles, secreted by both tumoral and stromal cells, serve as molecular transporters, delivering a heterogeneous mix of biomolecules such as RNAs, proteins, and lipids. In the CRC context, exosomes exert dual roles: they promote tumor growth, metastasis, and immune escape by altering immune cell functions and activating oncogenic signaling pathways and offer potential as biomarkers for early CRC detection and treatment targets. This review delves into the multifunctional roles of exosomes in the CRC immune microenvironment, highlighting their potential implications for future therapeutic strategies and clinical outcomes.


Assuntos
Neoplasias Colorretais , Exossomos , Humanos , Exossomos/metabolismo , RNA/metabolismo , Células Estromais/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
19.
Int J Biol Macromol ; 263(Pt 1): 130607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447848

RESUMO

Bactrocera dorsalis is a notorious pest widely distributed across most Asian countries. With the rapid development of pesticide resistance, new pest control methods are urgently needed. RNAi-based sterile insect technique (SIT) is a species-specific pest management strategy for B. dorsalis control. It is of great significance to identify more target genes from B. dorsalis, and improve the RNAi efficiency. In this study, microinjection-based RNAi results showed that six 20E response genes were necessary for male fertility of B. dorsalis, of which E75 was identified as the key target according to the lowest egg-laying number and hatching rate after E75 knockdown. Three nanoparticles chitosan (CS), chitosan­sodium tripolyphosphate (CS-TPP), and star polycation (SPc) were used to encapsulate dsE75 expressed by HT115 strain. Properties analysis of nanoparticle-dsRNA complexes showed that both CS-TPP-dsRNA and SPc-dsRNA exhibited better properties (smaller size and polydispersity index) than CS-dsRNA. Moreover, oral administration of CS-TPP-dsE75 and SPc-dsE75 by males resulted in more abnormal testis and significantly lower fertility than feeding naked dsE75. Semi-field trials further confirmed that the number of hatched larvae was dramatically reduced in these two groups. Our study not only provides more valuable targets for RNAi-based SIT, but also promotes the application of environment-friendly management against B. dorsalis in the field.


Assuntos
Quitosana , Infertilidade , Nanopartículas , Tephritidae , Animais , Masculino , Interferência de RNA , Ecdisona , Insetos , Controle de Pragas
20.
Artigo em Inglês | MEDLINE | ID: mdl-38555596

RESUMO

OBJECTIVE: To conduct a meta-analysis and a bioinformatics analysis to assess the relationship between IGF2BP2 gene polymorphism and pan-cancer risk. METHODS: PubMed, EMBASE, and Web of Science were conducted to literature searches. The heterogeneity test was used in five genetic models. Odds ratios (OR), 95% confidence intervals (CI), and p-values were used to evaluate the combined effects of various genetic models. Subgroup analysis and Meta-regression analysis were used to analyze the characteristics of heterogeneity. Sensitivity analysis and publication bias were also performed. Transcriptomic information on IGF2BP2 was downloaded and analyzed from the TCGA and GTEx databases. GEPIA (http://gepia.cancer-pku.cn/) was performed to analyze the relationship between IGF2BP2 expression and cancer tissue. RESULTS: This meta-analysis contained 7 case-control studies, with 5,908 cases and 7,890 controls. There were significant differences in the heterozygous genetic model of IGF2BP2 gene rs4402960 polymorphism (OR = 1.080, 95% CI = 1.003-1.163, p = 0.041). In subgroup analysis based on ethnicity, There was a statistical significant association in Chinese (heterozygous: OR = 1.110, 95% CI = 1.010-1.220, p = 0.030). Bioinformatics analysis found that IGF2BP2 was over-expressed in pan-cancer (p < 0.01). In addition, the Kaplan-Meier estimate showed that there is statistical significance of OS between the low and high IGF2BP2 TPM groups in Lung adenocarcinoma (p <0.001). CONCLUSIONS: To sum up, IGF2BP2 gene polymorphism may be related to cancer risk. IGF2BP2 has diagnostic value in the diagnosis and treatment of pan-cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...